CropMirrorNormalize¶
- class dragon.vm.dali.ops.CropMirrorNormalize(
 crop=None,
 mirror=None,
 mean=0.0,
 std=1.0,
 dtype='float32',
 output_layout='CHW',
 **kwargs
 )[source]¶
- Crop and normalize image with the horizontal flip. - Examples: - flip_rng = dali.ops.CoinFlip(0.5) cmn = dali.ops.CropMirrorNormalize( # Match the number of spatial dims # (H, W) for 2d input # (D, H, W) for 3d input crop=(224, 224), # Historical BGR values to normalize input mean=(103.53, 116.28, 123.675), std=(57.375, 57.12, 58.395), # Or ``float16`` for fp16 training dtype='float32', # Or ``HWC`` output_layout='CHW', ) y = cmn(inputs['x'], mirror=flip_rng()) 
__new__¶
- static CropMirrorNormalize.__new__(
 cls,
 crop=None,
 mirror=None,
 mean=0.0,
 std=1.0,
 dtype='float32',
 output_layout='CHW',
 **kwargs
 )[source]¶
- Create a - CropMirrorNormalizeoperator.- Parameters:
- crop (Sequence[int], optional) – The cropped spatial dimensions for output.
- mirror ({0, 1}, optional) – Whether to apply the horizontal flip.
- mean (Union[float, Sequence[float]], optional) – The values to subtract.
- std (Union[float, Sequence[float]], optional) – The values to divide after subtraction.
- dtype (str, optional, default='float32') – The output data type.
- output_layout (str, optional) – The output data layout.
 
 - Returns:
- nvidia.dali.ops.CropMirrorNormalize – The operator. 
 
