Unfold¶
- class
dragon.vm.torch.nn.
Unfold
(
kernel_size,
dilation=1,
padding=0,
stride=1
)[source]¶ Extract the sliding blocks.
This module excepts the input size \((N, C, D1, D2, ...)\), and output size is \((N, C \times \prod(\text{kernel\_size}), L)\), where \(N\) is the batch size, \(C\) is the number of channels, \(L\) is \(\prod(D_{\text{out}})\).
Examples:
m = torch.nn.Unfold(3, padding=1) x = torch.ones(2, 2, 2, 2) y = m(x)
See also
__init__¶
Unfold.
__init__
(
kernel_size,
dilation=1,
padding=0,
stride=1
)[source]¶Create a
Unfold
module.- Parameters:
- kernel_size (Union[int, Sequence[int]]) – The size of sliding window.
- dilation (Union[int, Sequence[int]], optional, default=1) – The dilated rate of sliding convolution.
- stride (Union[int, Sequence[int]], optional, default=1) – The stride of sliding window.
- padding (Union[int, Sequence[int]], optional, default=0) – The zero padding size.