Optimizer¶
- class
dragon.vm.torch.optim.
Optimizer
(
params,
defaults,
**kwargs
)[source]¶ The base class of optimizers.
Inherit this class to design a new optimizer:
class MyOptimizer(torch.optim.Optimizer): def __init__(params, hp1, hp2): defaults = dict(hp1=hp1, hp2=hp2) super(MyOptimizer, self).__init__(params, defaults)
__init__¶
Optimizer.
__init__
(
params,
defaults,
**kwargs
)[source]¶Create a
Optimizer
.- Parameters:
- params (Sequence[dragon.vm.torch.nn.Parameter]) – The parameters to optimize.
- defaults (dict) – The pre-defined default hyper-parameters.
Methods¶
add_param_group¶
Optimizer.
add_param_group
(param_group)[source]¶Add a new param group into the optimizer.
attr:param_group is a dict containing the defaults:
# A group defined ``lr`` and ``weight_decay`` param_group = {'params': [], 'lr': 0.01, 'weight_decay': 0.0001}
- Parameters:
- param_group (dict) – The param group to add.
step¶
sum_grad¶
Optimizer.
sum_grad
()[source]¶Sum the gradients of all parameters.
Call this method after each
backward
pass:x = torch.ones(1, requires_grad=True) optimizer = torch.optim.SGD([x], lr=0.1) for epoch in range(2): for step in range(3): y = x + 1 y.backward() optimizer.sum_grad() optimizer.step() print(x) # 0.4
zero_grad¶
Optimizer.
zero_grad
(set_to_none=False)[source]¶Set the gradients of all parameters to zero.
This method is not necessary usually, as we will overwrite the gradients in the next computation.
However, if some gradients are not computed every time, remember to set them to none before
step(...)
:m1 = torch.nn.Linear(3, 3) m2 = torch.nn.Linear(3, 3) x = torch.ones(1, 3, requires_grad=True) for i in range(10): x = m1(x) if i in (2, 4, 6): x += m2(x) optimizer.zero_grad(set_to_none=True) x.backward() optimizer.step()
- Parameters:
- set_to_none (bool, optional, default=False) – Whether to remove the gradients instead of zeroing.