Normalize¶
- class
dragon.vm.dali.ops.
Normalize
(
axes=(0, 1),
mean=None,
stddev=None,
scale=1.0,
shift=0.0,
batch=False,
epsilon=0,
dtype='float32',
**kwargs
)[source]¶ Normalize input.
Examples:
norm = dali.ops.Normalize( # Batch normalization case of HWC layout axes=(0, 1), batch=True, epsilon=1e-5, ) y = norm(inputs['x'])
__new__¶
- static
Normalize.
__new__
(
cls,
axes=(0, 1),
mean=None,
stddev=None,
scale=1.0,
shift=0.0,
batch=False,
epsilon=0,
dtype='float32',
**kwargs
)[source]¶ Create a
Normalize
operator.- Parameters:
- axes (Sequence[int], optional) – The axes to normalize.
- mean (float, optional) – The value to subtract.
- stddev (float, optional) – The value to divide after subtraction.
- scale (float, optional, default=1.0) – The scale factor after normalization.
- shift (float, optional, default=0.0) – The shift factor after normalization.
- batch (bool, optional, default=False) – Whether to compute mean and stddev across the batch.
- epsilon (float, optional, default=0) – The value added to the computed variance.
- dtype (str, optional, default='float32') – The output data type.
- Returns:
nvidia.dali.ops.Normalize – The operator.