LayerNorm¶
- class
dragon.vm.torch.nn.LayerNorm(
normalized_shape,
eps=1e-05,
elementwise_affine=True
)[source]¶ Apply the layer normalization. [Ba et.al, 2016]
The normalization is defined as:
\[y = \frac{x - \mathrm{E}[x]} {\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta \]Examples:
x = torch.randn(2, 3, 4) m = torch.nn.LayerNorm(x.size()[1:]) y = m(x)
See also
__init__¶
LayerNorm.__init__(
normalized_shape,
eps=1e-05,
elementwise_affine=True
)[source]¶Create a
LayerNormmodule.- Parameters:
- normalized_shape (Union[int, Sequence[int]]) – The size normalized over the last dimensions.
- eps (float, optional, default=1e-5) – The value to \(\epsilon\).
- elementwise_affine (bool, optional, default=True) –
Trueto apply an affine transformation.