moments¶
dragon.nn.
moments
(
inputs,
axis=None,
keepdims=False,
**kwargs
)[source]¶Compute the mean and variance of input along the given axis.
\[\begin{cases} \mathrm{E}[x] = \frac{1}{n}\sum(x) \\ \mathrm{Var}[x] = \frac{1}{n}\sum(x - \mathrm{E}[x])^{2} \end{cases} \]axis
could be negative orNone
:x = dragon.constant([[1, 2, 3], [4, 5, 6]], dtype='float32') # A negative axis is the last-k axis print(dragon.nn.moments(x, 1)) print(dragon.nn.moments(x, -1)) # Equivalent # If axis is None, reduce as a vector and return scalars # will be applied to return a scalar result print(dragon.nn.moments(x)) # mean is 3.5, var is 2.916667 # Also, axis could be a sequence of integers print(dragon.nn.moments(x, (0, 1))) # mean is 3.5, var is 2.916667
- Parameters:
- inputs (dragon.Tensor) – The input tensor.
- axis (Union[int, Sequence[int]], optional) – The axis to reduce.
- keepdims (bool, optional, default=False) – Keep the reduced dimensions or not.
- Returns:
- dragon.Tensor – The mean tensor.
- dragon.Tensor – The variance tensor.