hardsigmoid¶
dragon.nn.
hardsigmoid
(
inputs,
alpha=0.2,
beta=0.5,
inplace=False,
**kwargs
)[source]¶Apply the hard sigmoid function.
The HardSigmoid function is defined as:
\[\text{HardSigmoid}(x) = \max(0, \min(1, \alpha * x + \beta)) \]Examples:
x = dragon.constant([-2.5, -1., 0., 1., 2.5]) print(dragon.nn.hardsigmoid(x))
- Parameters:
- inputs (dragon.Tensor) – The input tensor.
- alpha (float, optional, default=0.2) – The value to \(\alpha\).
- beta (float, optional, default=0.5) – The value to \(\beta\).
- inplace (bool, optional, default=False) – Call in-place or return a new tensor.
- Returns:
dragon.Tensor – The output tensor.