conv_transpose

dragon.nn.conv_transpose(
  inputs,
  kernel_shape=(3, 3),
  strides=1,
  pads=0,
  dilations=1,
  group=1,
  padding='VALID',
  output_padding=None,
  output_shape=None,
  data_format='NCHW',
  **kwargs
)[source]

Apply the n-dimension deconvolution.

  • If data_format is 'NCHW', excepts input shape \((N, C_{\text{in}}, D1, D2, ...)\), weight shape \((C_{\text{in}}, C_{\text{out}}, D1_{\text{k}}, D2_{\text{k}}, ...)\), and output shape is \((N, C_{\text{out}}, D1_{\text{out}}, D2_{\text{out}}, ...)\).
  • If data_format is 'NHWC', excepts input shape \((N, D1, D2, ..., C_{\text{in}})\), weight shape \((C_{\text{in}}, D1_{\text{k}}, D2_{\text{k}}, ..., C_{\text{out}})\), and output shape is \((N, D1_{\text{out}}, D2_{\text{out}}, ..., C_{\text{out}})\).
  • If padding is 'VALID', pads controls the explicit padding size. Otherwise, size are computed automatically use the given method.

Examples:

for i in range(3):
    ndim = i + 1
    x = dragon.ones((1, 2) + (2,) * ndim)
    w = dragon.ones((3, 2) + (1,) * ndim)
    y = dragon.nn.conv_transpose(
        [x, w],
        kernel_shape=(1,) * ndim,
        output_shape=(3,) * ndim,
        output_padding=(1,) * ndim)
    assert y.shape == (1, 3) + (3,) * ndim
Parameters:
  • inputs (Sequence[dragon.Tensor]) – The tensor x, weight and optional bias.
  • kernel_shape (Sequence[int], optional, default=(3, 3)) – The shape of convolution window.
  • strides (Union[int, Sequence[int]], optional, default=1) – The stride of convolution window.
  • pads (Union[int, Sequence[int]], optional, default=0) – The zero padding size.
  • dilations (Union[int, Sequence[int]], optional, default=1) – The rate of dilated convolution.
  • group (int, optional, default=1) – The number of groups to split channels into.
  • padding (str, optional, default='VALID') – 'VALID', 'SAME', 'SAME_UPPER' or 'SAME_LOWER'.
  • output_padding (Union[Sequence[int], dragon.Tensor], optional) – The additional size added to the output shape.
  • output_shape (Union[Sequence[int], dragon.Tensor], optional) – The output shape for automatic padding.
  • data_format (str, optional, default='NCHW') – 'NCHW' or 'NHWC'.
Returns:

dragon.Tensor – The output tensor.