BatchNorm1d¶
- class
dragon.vm.torch.nn.BatchNorm1d(
num_features,
eps=1e-05,
momentum=0.1,
affine=True,
track_running_stats=True
)[source]¶ Apply the batch normalization over 2d input. [Ioffe & Szegedy, 2015].
The normalization is defined as:
The running average of statistics are calculated as:
See also
__init__¶
BatchNorm1d.__init__(
num_features,
eps=1e-05,
momentum=0.1,
affine=True,
track_running_stats=True
)[source]¶Create a
BatchNorm1dmodule.- Parameters:
- num_features (int) – The number of channels.
- eps (float, optional, default=1e-5) – The value to .
- momentum (float, optional, default=0.1) – The value to .
- affine (bool, optional, default=True) –
Trueto apply an affine transformation. - track_running_stats (bool, optional, default=True) –
Trueto using stats when switching toeval.