GroupNorm¶
- class
dragon.vm.torch.nn.
GroupNorm
(
num_groups,
num_channels,
eps=1e-05,
affine=True
)[source]¶ Apply the group normalization. [Wu & He, 2018].
The normalization is defined as:
\[y = \frac{x - \mathrm{E}[x]} {\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta \]Examples:
m = torch.nn.GroupNorm(num_groups=2, num_channels=4) x = torch.randn(2, 4) y = m(x)
See also
__init__¶
GroupNorm.
__init__
(
num_groups,
num_channels,
eps=1e-05,
affine=True
)[source]¶Create a
GroupNorm
module.- Parameters:
- num_groups (int) – The number of groups.
- num_channels (int) – The number of channels.
- eps (float, optional, default=1e-5) – The value to \(\epsilon\).
- affine (bool, optional, default=True) –
True
to apply an affine transformation.