Affine¶
- class 
dragon.vm.torch.nn.Affine(
num_features,
bias=True,
fix_weight=False,
fix_bias=False,
inplace=False
)[source]¶ Apply affine transformation.
Affine is often taken as a post-processing of normalization.
Examples:
m = torch.nn.Affine(5) # Apply a 2d transformation x2d = torch.ones(3, 5) y2d = m(x2d) # Apply a 3d transformation x3d = torch.ones(3, 5, 4) y3d = m(x3d) # Apply a 4d transformation x4d = torch.ones(3, 5, 2, 2) y4d = m(x4d)
See also
__init__¶
Affine.__init__(
num_features,
bias=True,
fix_weight=False,
fix_bias=False,
inplace=False
)[source]¶Create an
AffineChannelmodule.- Parameters:
 - num_features (int) – The number of channels.
 - bias (bool, optional, default=True) – 
Trueto attach a bias. - fix_weight (bool, optional, default=False) – 
Trueto freeze theweight. - fix_bias (bool, optional, default=False) – 
Trueto freeze thebias. - inplace (bool, optional, default=False) – Whether to do the operation in-place.