Conv2DTranspose¶
- class
dragon.vm.tensorflow.keras.layers.
Conv2DTranspose
(
filters,
kernel_size,
strides=1,
padding='valid',
output_padding=None,
data_format=None,
dilation_rate=1,
activation=None,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
**kwargs
)[source]¶ 2D deconvolution layer.
__init__¶
Conv2DTranspose.
__init__
(
filters,
kernel_size,
strides=1,
padding='valid',
output_padding=None,
data_format=None,
dilation_rate=1,
activation=None,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
**kwargs
)[source]¶Create a
Conv1DTranspose
Layer.- Parameters:
- filters (int`) – The number of output filters.
- kernel_size (Union[int, Sequence[int]]) – The shape of convolution window.
- strides (Union[int, Sequence[int]], optional, default=1) – The stride of convolution window.
- padding (Union[str, Sequence[int]], optional) – The padding algorithm or size.
- output_padding (Sequence[int], optional) – The additional size added to the output shape.
- data_format (str, optional, default='channels_last') –
'channels_first'
or'channels_last'
. - dilation_rate (Union[int, Sequence[int]], optional, default=1) – The rate of dilated convolution.
- activation (Union[callable, str], optional) – The optional activation function.
- use_bias (bool, optional, default=True) – Add a bias tensor to output or not.
- kernel_initializer (Union[callable, str], optional) – The initializer for kernel tensor.
- bias_initializer (Union[callable, str], optional) – The initializer for bias tensor.
- kernel_regularizer (Union[callable, str], optional) – The regularizer for kernel tensor.
- bias_regularizer (Union[callable, str], optional) – The regularizer for bias tensor.