nll_loss¶
- dragon.losses.- nll_loss(
 inputs,
 axis=- 1,
 ignore_index=None,
 reduction='valid',
 **kwargs
 )[source]¶
- Compute the loss of negative likelihood. - Examples: - x = dragon.constant([[0.5, 0.5], [0.3, 0.7]]) x = dragon.math.log(x) y = dragon.constant([1, 0]) print(dragon.losses.nll_loss([x, y])) # 0.9485599 - Parameters:
- inputs (Sequence[dragon.Tensor]) – The tensor inputandtarget.
- axis (int, optional, default=-1) – The reduction axis.
- ignore_index (int, optional) – The ignored value of target.
- reduction ({'none', 'sum', 'mean', 'valid'}, optional) – The reduction method.
 
- inputs (Sequence[dragon.Tensor]) – The tensor 
 - Returns:
- dragon.Tensor – The output tensor. 
 
