CropMirrorNormalize¶
- class
dragon.vm.dali.ops.
CropMirrorNormalize
(
crop=None,
mirror=None,
mean=0.0,
std=1.0,
dtype='float32',
output_layout='CHW',
**kwargs
)[source]¶ Crop and normalize image with the horizontal flip.
Examples:
flip_rng = dali.ops.CoinFlip(0.5) cmn = dali.ops.CropMirrorNormalize( # Match the number of spatial dims # (H, W) for 2d input # (D, H, W) for 3d input crop=(224, 224), # Historical BGR values to normalize input mean=(103.53, 116.28, 123.675), std=(57.375, 57.12, 58.395), # Or ``float16`` for fp16 training dtype='float32', # Or ``HWC`` output_layout='CHW', ) y = cmn(inputs['x'], mirror=flip_rng())
__new__¶
- static
CropMirrorNormalize.
__new__
(
cls,
crop=None,
mirror=None,
mean=0.0,
std=1.0,
dtype='float32',
output_layout='CHW',
**kwargs
)[source]¶ Create a
CropMirrorNormalize
operator.- Parameters:
- crop (Sequence[int], optional) – The cropped spatial dimensions for output.
- mirror ({0, 1}, optional) – Whether to apply the horizontal flip.
- mean (Union[float, Sequence[float]], optional) – The values to subtract.
- std (Union[float, Sequence[float]], optional) – The values to divide after subtraction.
- dtype (str, optional, default='float32') – The output data type.
- output_layout (str, optional) – The output data layout.
- Returns:
nvidia.dali.ops.CropMirrorNormalize – The operator.